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Abstract. The standard additive quark model and the ensuing counting rules are modified to take into
account not only the quark–gluonic content of the Pomeron but also of the secondary Reggeons, as well
as the fact that the soft Pomeron is not just a gluonic ladder. A much-improved description of pp, πp, γp
and γγ cross sections is obtained.

1 Introduction

The additive quark model (AQM)[1–4] has provided for
a long time a simple and successful model to describe,
in particular, the main relations between the high-energy
cross sections of different hadronic processes [5,6]. Con-
sidering, for example, the pion–nucleon and the nucleon–
nucleon interactions, one finds that the relation σπN

tot /σNN
tot

= 2/3 is in agreement with the available experimental data
within an accuracy of a few percent. A linear dependence
of the amplitudes on the number of quarks inside the scat-
tered hadrons has been confirmed on more fundamental
grounds through QCD-like models [7,8].

A new, interesting case to which we can apply (and
test) the AQM involves extending it to photon-induced
reactions, because the data on these processes are now
available up to quite high energies (

√
s ≈ 200 GeV for γp

and
√

s ≈ 100 GeV for γγ inelastic cross sections) [9,10].
The three processes pp, γp and γγ are related via unitar-
ity and factorization, and this is the only complete set of
related processes for which we have data. For the set of pp,
πp, ππ reactions, for instance, the data on ππ interactions
are in fact absent, and πp total cross sections are known
only up to relatively low energies (

√
s < 30 GeV).

Considering the above-mentioned γp processes, we show
that the standard AQM does not describe the data with
sufficiently high quality 1. In Sect. 3, we propose a modi-
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1 We cannot compare the quality of our fit with those pre-
sented in some recent papers [11,12] because their χ2 are not
given. Differences between their and our predictions for cross
sections at higher energies are discussed in Sect. 4.

fied AQM that takes into account the quark–gluonic con-
tent of the exchanged Reggeons and the corrections to the
Pomeron–quark interaction. As a first try, we discuss the
cases of the Pomeron and f Reggeon, because they con-
tribute to all amplitudes. The suggested modification pro-
vides a much-improved agreement with the experimental
data. In order to make clear the content of our modifica-
tion, we will not consider here the scattering processes at
t 6= 0. The parameterization of the scattering amplitudes
at t 6= 0 is much more complex than at t = 0. This will be
the subject of a forthcoming paper.

2 The old additive quark model

2.1 The Pomeron

The traditional additive quark model treats the elastic
scattering of two hadrons at high energy as a Pomeron
exchange between two quarks, one in each hadron. From
the point of view of the quark–gluon picture, the Pome-
ron is represented by a gluon ladder where end-points are
coupled with quark lines. The simplest diagram describing
the main contribution to elastic hadron–hadron amplitude
in the old AQM is exemplified in Fig. 1.

In accordance with the AQM, when two hadrons h1
and h2 collide, and they are made of n1 and n2 quarks,
respectively, the Pomeron contribution to the elastic am-
plitude has the form

A
(h1h2)
P (s, t) = n1n2Ph1Ph2A

(qq)
P (sh1h2 , t)G

(h1)
P (t)G(h2)

P (t),
(1)

where
√

Phi
is the probability of finding the hadron hi

as a quark system, A
(qq)
P (s, t) is the amplitude of elastic

scattering of quarks due to the Pomeron, and the squared
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Fig. 1. The Pomeron diagrams for pp scattering in the traditional additive quark model

energy sh1h2 will be defined more precisely below ((9)).
Ghi(t) is the form factor of the hadron hi; it takes into
account a redistribution of momenta of the quarks inside
a hadron after the interaction of one of them with the
Pomeron (each system of quarks should be preserved, after
the interaction, as a hadron of the same kind). It is clear
that G

(h1)
P (0) = G

(h2)
P (0) = 1 at t = 0. In what follows, we

apply the traditional and the modified AQM to describe
the total cross sections

σtot(s) = 8πIm A(s, 0) (2)

and the ratios of the real to the imaginary forward ampli-
tudes

ρ(s) =
ReA(s, 0)
Im A(s, 0)

. (3)

For the Pomeron contribution to the quark–quark scat-
tering, we will consider two schemes. The first one is the
supercritical Pomeron (SCP), a Pomeron with an inter-
cept larger than one; this is a variant of the Donnachie–
Landshoff Pomeron (DLP)[13], but with a constant term
added to reflect preasymptotic properties. This term is
just a simple pole in the complex angular momentum
plane j with unit intercept

A
(qq)
P (s, 0) = ig2

1 [−ζ + (−is/s0)αP(0)−1] , (4)

where s0 = 1 GeV2. The second model is the dipole Po-
meron (DP) model (see, for instance [14]), corresponding
to the sum of a simple pole and a double j pole with unit
intercepts

A
(qq)
P (s, 0) = ig2

1 [−ζ + ln(−is/s0)] . (5)

In the previous expressions, the parameter ζ is expected to
be positive (from the fits to hadronic and γp cross sections
[15–17]). As shown in [16], the Pomeron contribution at
t 6= 0 is more complicated than (1) because each term in
(4) and (5) should be multiplied by an a priori different
vertex function G(t). Thus, at t 6= 0, (1) must be rewritten
as

A
(h1h2)
P (s, t) =

n1n2Ph1Ph2

∑
i=1,2 A

(qq)
Pi (sh1h2 , t)G

(h1)
Pi (t)G(h2)

Pi (t), (6)

where, generalizing (4) and (5),

Aqq
P1(s, t) = −ig2

1ζ(−is/s0)α̃P(t)−1,

Aqq
P2(s, t) = ig2

1L(s, t), α̃P(0) = 1 (7)

and

L(s, t) = (−is/s0)αP(t)−1,

αP(0) > 1 for SCP, (8)

L(s, t) = ln(−is/s0)(−is/s0)αP(t)−1,

αP(0) = 1 for DP . (8′)

Generally speaking, the trajectories αP(t) and α̃P(t) can
differ not only by their intercepts but also by their slopes.
At high energy, in the center-of-mass system, each hadron
has the energy

√
s/2 and, according to the AQM, each

quark inside the hadron hi has the energy (
√

s/2)/ni (if
ni is the number of quarks comprised in the hadron hi).
Thus, the energy of each pair of quarks (one from the
hadron h1 and the other from the hadron h2) is

sh1h2 =
( √

s
2

n1
+

√
s

2

n2

)2

−
( √

s
2

n1
−

√
s

2

n2

)2

=
s

n1n2
. (9)

There are nine (3×3) similar diagrams in pp scattering,
contributing to the corresponding amplitudes

A
(pp)
Pi (s, t) = 9P 2

p A
(qq)
Pi (s/9, t)(Gp

Pi(t))
2, i = 1, 2 .

(10)
Considering also elastic πp scattering with 3×2 diagrams,
one can write

A
(πp)
Pi (s, t) = 6PpPπ A

(qq)
Pi (s/6, t)Gp

Pi(t)G
π
Pi(t), i = 1, 2.

(11)
Let us focus now on γ-induced processes, for which the
main Pomeron contributions (in the AQM) are shown in
Fig. 2.
The simplest approximation that describes the γp elastic
scattering as due to the Pomeron is

A
(γp)
Pi (s, t) = 6αPp A

(qq)
Pi (s/6, t)Gp

Pi(t)G
γ
Pi(t), i = 1, 2 ,

(12)
where α = e2/4π ≈ 1/137 is the fine-structure constant.
(12) takes into account the γqq̄ vertices in the qq̄ loop at
the upper block of the diagram in Fig. 2a. Similarly, the
relevant γγ amplitude (Fig. 2b) has the form

A
(γγ)
Pi (s, t) = 4α2 A

(qq)
Pi (s/4, t)(Gγ

Pi(t))
2, i = 1, 2 . (13)

It is more realistic, however, to consider a different picture
for γp and γγ diagrams. In accordance with the vector me-
son dominance (VDM) model, the photon is transformed
into a vector meson, which, after interacting with the Po-
meron, comes back to a photon state. Thus we replace α
with Pγ in (12, 13), where

√
Pγ describes the transition

of a γ into a pair qq̄ (for instance, via a vector meson).
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Fig. 2a,b. The Pomeron diagrams for (a) γp and (b) γγ scattering in the conventional AQM

2.2 Secondary Reggeons

At the presently attainable (subasymptotic) squared en-
ergy s, besides the Pomeron’s contribution, one should re-
tain also the contribution of other Reggeons (f, ρ, ω, etc.)
to the elastic amplitudes. It is usually assumed that they
are added to the Pomeron, so that the amplitude becomes

A(h1h2)(s, t) = A
(h1h2)
P (s, t) +

n1n2Ph1Ph2

∑
R

A
(qq)
R (sh1h2 , t)G

(h1)
R (t)G(h2)

R (t), (14)

where the Pomeron amplitude is detailed in the preceding
section, and the sum runs over all Reggeons (R) contribut-
ing to the given process. In what follows, we will consider
pp, πp, γp and γγ scattering at

√
s ≥ 4 GeV and t = 0.

Therefore, only f and ω will contribute to p∓p processes
(here and in what follows, p− ≡ p̄, p+ ≡ p), f and ρ to
π∓p, and f to γp and γγ. For the secondary Reggeons, we
take the standard forms

A
(qq)
f (s, t) = ig2

f

(
− is/s0

)αf (t)−1

, (15)

A(qq)
ω (s, t) = g2

ω

(
− is/s0

)αω(t)−1

, (16)

A(qq)
ρ (s, t) = g2

ρ

(
− is/s0

)αρ(t)−1

. (17)

2.3 Complete AQM amplitude

Collecting all the previous results, the relevant amplitudes
at t = 0 2 in the old AQM for the four cases under inves-
tigation are

A(pp̄
pp)(s, 0) = 9P 2

p

[
A

(qq)
P (s/9, 0)

+A
(qq)
f (s/9, 0) ± A(qq)

ω (s/9, 0)
]
, (18)

2 This is all we need for total cross sections.

A(π−p

π+p)(s, 0)=6PπPp

[
A

(qq)
P (s/9, 0)±A(qq)

ρ (s/6, 0)
]
, (19)

A(γp)(s, 0) = 6PγPp

[
A

(qq)
P (s/6, 0) + A

(qq)
f (s/6, 0)

]
, (20)

A(γγ)(s, 0) = 4P 2
γ

[
A

(qq)
P (s/4, 0) + A

(qq)
f (s/4, 0)

]
(21)

where the Pomeron quark–quark amplitude A
(qq)
P is de-

fined by (4) or (5), and the Reggeon quark–quark ampli-
tudes A

(qq)
R are given in (15)–(17).

The details of the fit with the conventional AQM model
are given in Sect. 4. Here we note only that the quality of
the fit is not so good (χ2/d.o.f. ≈ 3) where d.o.f. stands
for degrees of freedom.

3 Modification of the additive quark model

3.1 Pomeron

In the spirit of the QCD-like picture, we can say that
the Pomeron has at least four gluonic edges coupled with
quark lines. However, we would like to stress here that,
as is well known, a soft Pomeron (dominating the elastic
scattering amplitudes) is not just a two-gluon state (an
approximation used, for example, in [7,8]). Similarly, it
is not just a gluonic ladder (another approximation also
used rather often), and, perhaps most importantly, it can
not yet be calculated within QCD. Finally, it is not even a
simple Regge pole, leading either to a constant total cross
section or to a violation of the Froissart–Martin unitar-
ity bound. At present, only phenomenological models of
the Pomeron can successfully describe, without at least
a rough violation of unitarity, the available data on the
various cross sections in a soft kinematic region.

Therefore, in spite of the often-mentioned analogy be-
tween the Pomeron and a gluonic ladder, the soft Pome-
ron diagrams at the right of Fig. 2a and 2b are not just
the ladder diagrams shown on the left of each figure. The
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latter, in fact, assume that each edge of the gluonic lad-
der of the Pomeron couples to the hadron, via lines of
individual quarks only. Besides the diagrams of Figs. 1
and 2, additional terms may contribute to the amplitudes.
They include, for instance, diagrams in which the Po-
meron line is coupled with two quark lines rather than
with one line only, leading to a modified additive quark
model (MAQM). Examples of such diagrams are typified
in Fig. 3. Notice, however, that the diagrams on the right-
hand side of Fig. 3 are indeed much more complicated
than the left-hand-side ladder diagrams; for instance, they
take into account that a soft Pomeron can interact with
a pair of quarks as a whole (not necessarily a diquark; all
possible states of this pair of quarks, excluding the two
separated quarks, have to be included, and are somehow
“hidden” in this new coupling). These kinds of couplings
were absent in the conventional AQM. Figure 3a exhibits
one such new coupling, while both couplings are new in
Fig. 3b. The left-hand-side diagrams of all figures are to
be considered only as an indication of what should be the
leading terms describing the actual couplings.

Lacking an adequate mathematical formalism to really
calculate the soft Pomeron, we take a pragmatic attitude
to simulate the effects of these more general couplings,
and assume that the cheapest price to pay for this gen-
eralization is an additional coupling constant describing
the vertex of a Pomeron with two quarks. This constant
will have to be determined from the fit to the data, and
can be considered as a measure of the deviation between
the new counting rules and the old ones. We expect (and
this is confirmed by fitting the data) that this constant is
small, and we neglect the effect simulating the interaction
of the Pomeron with three quarks as a whole.

In summary, our main assumption for the Pomeron
is that there exists a coupling constant Pomeron (pair of
quarks), which leads to new terms in the elastic ampli-
tude. In what follows, we obtain the counting rules for
these terms and determine from the experimental data a
magnitude of the corrections to the traditional AQM am-
plitudes.

Taking into account all possible diagrams that can con-
tribute to each case, we redefine the Pomeron contribu-
tions (10–13) as follows (once again, it is sufficient to write
all amplitudes at t = 0 because our modification concerns
the counting rules rather than the form of the amplitudes;
a generalization to t 6= 0 is, however, immediate from the
previous section):
The p∓p interaction is

A
(pp)
P (s, 0) =

9P 2
p [A(1)

P (s/9, 0)+2A(2)
P (2s/9, 0)+A

(3)
P (4s/9, 0)], (22)

the π∓p interaction is

A
(πp)
P (s, 0) = 3PπPp[2A

(1)
P (s/6, 0)+3A(2)

P (s/3, 0)

+A
(3)
P (2s/3, 0)], (23)

the γp interaction is

A
(γp)
P (s, 0) =

3PγPp[2A
(1)
P (s/6, 0)+3A(2)

P (s/3, 0)+A
(3)
P (2s/3, 0)],(24)

and the γγ interaction is

A
(γγ)
P (s, 0) = P 2

γ [4A
(1)
P (s/4, 0)+4A

(2)
P (s/2, 0)+A

(3)
P (s, 0)] ,

(25)
where

A
(1)
P (s, 0) = i[−η2

1 + g2
1L(s)], (26)

is the Pomeron contribution to the amplitude in the old
AQM, in which η2

1 replaces the term ζg2
1 , (we mentioned

already that, when the data are fitted, ζ turns out to be
positive). Two new contributions appear in each of the
above expressions, because the new coupling constants
g2, η2 simulate the interaction of the Pomeron with a pair
of quarks (they give the corrections which we call MAQM):

A
(2)
P (s, 0) = i[−η1η2 + g1g2L(s)], (27)

A
(3)
P (s, 0) = i[−η2

2 + g2
2L(s)] . (28)

Here L(s) = (−is/st)αP(0)−1 in the SCP model, L(s) =
ln(−is/s0) in the DP model, and η1, η2 are constants. The
numerical coefficient in front of each term of the ampli-
tudes (22)–(25) is just the number of possible diagrams
contributing to each of the various vertices.

As previously discussed, each Pomeron term A
(i)
P (s, 0),

i = 1, 2, 3, is the sum of two contributions. The first corre-
sponds to a double j pole (with couplings g1, g2 describing
the vertices with one and two quarks, respectively, as in-
dicated in Fig. 1 and Fig. 3) and the second corresponds
to a simple pole (with couplings η1 and η2).

The negative sign in front of the η in (26)–(28) simply
reflects the observation that this is required by the fits to
the data.

Comparing the new formulation we have to the AQM,
we see we have four parameters to determine η1, η2 and
g1, g2. The available data, however, are not sufficient to
determine four coupling constants (gk, ηk); for this reason
we consider the simpler case in which

η2
1/g2

1 = η2
2/g2

2 = ζ.

As follows from unitarity, the total cross sections for nn,
πn and ππ interactions (by cross section nn and πn, we
mean σnn = (σpp + σp̄p)/2 and σπn = (σπ+p + σπ−p)/2)
should satisfy the asymptotic factorization relation [18],

σ2
πn = σππσnn.

One can check that this relation holds also in the MAQM
if the constant terms in (26)–(28) are neglected. But the
well-known relation σπn/σnn = 3/2 does not hold ex-
actly in the MAQM. For the dipole Pomeron (L(s) =
ln(−is/s0)), this is modified into

σπn/σnn = σππ/σπn ≈ 2Pπ

3Pp

(
1 − 1

2
g1

g2

)
,

if g1/g2 � 1, as is expected (this is confirmed by the
data; see below). The same relations are valid (under the
replacement π → γ in the indices) for the nn, γn and γγ
processes.
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(a)

(b)

P

P

Fig. 3a,b. New Pomeron diagrams in the MAQM (examples): (a) only one Pomeron vertex is new; (b) both vertices are new

3.2 Secondary Reggeons.

In this section we discuss why the modifications of the
counting rules for secondary Reggeons are different from
those for the Pomeron, which have a different quark–glu-
onic structure. As already noted, this difference is usually
ignored in the AQM.

While the Pomeron is mostly a gluonic state which
can be coupled with any quark, independently of its fla-
vor, the Reggeons are, essentially, qq̄ states (see Fig. 4).
The diagrammatic structure of the f Reggeon (as well as
other Reggeons with vacuum quantum numbers) which,
being neutral, is a mixing of uū and dd̄ (not of ud̄ and dū)
states,3 is shown in Fig. 4.

Thus, in the pp diagram we show that the f Reggeon
can couple only to quarks with identical flavor. There are
four diagrams which show the f Reggeon coupling to u
quarks, and one which shows its coupling to d quarks.
This totals to five f Reggeon diagrams of pp scattering,
compared to nine diagrams for the Pomeron and nine for
the f Reggeon in the old AQM. We obtain

A
(pp)
f (s, 0) = 5P 2

p A
(qq)
f (s/9, 0). (29)

Similarly, for the πp diagrams we have

A
(πp)
f (s, 0) = 3PπPpA

(qq)
f (s/6, 0). (30)

The same couplings apply to γp diagrams. The upper loop
shown in Fig. 4b can contain either uū or dd̄ quarks, with
1/2 probability for each case. Therefore, there are 2 × 2 ×
1
2 = 2 terms for the u loop, and 2 × 1

2 = 1 term for the d
loop, leading to

A
(γp)
f (s, 0) = 3PγPpA

(qq)
f (s/6, 0). (31)

Performing a similar counting for the γγ amplitude, we
obtain

A
(γγ)
f (s, 0) = 2P 2

γ A
(qq)
f (s/4, 0). (32)

3 We ignore here the small contribution of other qq̄ states to
the f meson and, consequently, to the f Reggeon.

The crossing-odd ω Reggeon contributes only to the
pp and p̄p amplitudes, and we have

A(pp)
ω (s, 0) = 5P 2

p A(qq)
ω (s/9, 0). (33)

Similarly, counting the ρ contribution to the π∓p ampli-
tudes gives

A(pp)
ρ (s, 0) = 3P 2

p A(qq)
ρ (s/6, 0). (34)

Strictly speaking, we should consider another kind of con-
tribution since, in addition to the previous coupling of two
quark lines having the same flavor (uu or dd), we could
also have a coupling of two quark lines that have different
flavors (ud), because all secondary Reggeons with vacuum
quantum numbers are mixed states of uū and dd̄ (we ne-
glect harder flavors).

Once again, lacking the tools to actually perform the
calculation, we resort to describing the transition from a
uū to a dd̄ state, through just one new additional constant
(see Fig. 5), and we assume, for simplicity, that this new
contribution is given by multiplying the old Reggeon term
R by a constant λR. Note, however, that the counting rules
for these new terms are different from those which couple
identical quarks.

Putting everything together, the complete f Reggeon
contribution to the amplitudes is now the following:
The pp interaction is

A
(pp)
f (s, 0) = P 2

p [5A
(qq)
f1 (s/9, 0) + 4A

(qq)
f2 (s/9, 0)]

= P 2
p (5 + 4λf )A(qq)

f (s/9, 0), (35)

the πp interaction is

A
(πp)
f (s, 0) = 3PπPp[A

(qq)
f1 (s/6, 0) + A

(qq)
f2 (s/6, 0)]

= 3PπPp(1 + λf )A(qq)
f (s/6, 0), (36)

the γp interaction is

A
(γp)
f (s, 0) = 3PγPp[A

(qq)
f1 (s/6, 0) + A

(qq)
f2 (s/6, 0)]

= 3PγPp(1 + λf )A(qq)
f (s/6, 0), (37)
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Fig. 4a–c. The f Reggeon diagrams for (a) pp, (b) γp and (c) γγ scattering. The left diagrams give an example of the
quark–gluonic content of the f Reggeon and visualize the counting rules for the f contribution

Fig. 5. Mixing of uū and dd̄ states in a secondary Reggeon

and the γγ interaction is

A
(γγ)
f (s, 0) = 2P 2

γ [A(qq)
f1 (s/4, 0) + A

(qq)
f2 (s/4, 0)]

= 2P 2
γ (1 + λf )A(qq)

f1 (s/4, 0), (38)

where
A

(qq)
f1 (s, 0) ≡ A

(qq)
f (s, 0)

and
A

(qq)
f2 (s, 0) ≡ λfA

(qq)
f (s, 0) .

The value of λf should be determined from a fit to the
experimental data. Note that if λf = 1, one must go back
to the old counting rules for the f Reggeon. The ω and ρ
Reggeon contributions are easily derived from the above
expressions. It should be noted that the counting rules for
these Reggeons are unimportant in our fit, because we con-
sider one by one the processes to which they contribute.
Namely, ω contributes only to pp, and ρ contributes only
to πp amplitudes. Thus, it is sufficient to write them in
the old AQM form, if only pp, πp, γp and γγ cross sections
are considered.

3.3 Complete MAQM amplitudes

Summarizing the results of the new counting rules, the
final expressions for the t = 0 amplitudes of the reactions
under investigation in the MAQM are:

1. the pp and p̄p (or p∓p) amplitudes:

Ap∓p(s, 0) =
P 2

p {9[A(1)
P (s/9, 0) + 2A

(2)
P (2s/9, 0) + A

(3)
P (4s/9, 0)]+

(5 + 4λf )Af (s/9, 0) ± 9Aω(s/9, 0)};
(39)

2. π−p and π+p amplitudes:

Aπ∓p(s, 0) =
PπPp{3[2A

(1)
P (s/6, 0)+3A(2)

P (s/3, 0)+A
(3)
P (2s/3, 0)]+

3(1 + λf )Af (s/6, 0) ± 6Aρ(s/6, 0)}; and
(40)

3. the γp amplitude:

Aγp(s, 0) =
PγPp {3[2A

(1)
P (s/6, 0)+3A(2)

P (s/3, 0)+A
(3)
P (2s/3, 0)]+

3(1 + λf )Af (s/6, 0)};
(41)

4. and the γγ amplitude:

Aγγ(s, 0) =
P 2

γ {4A
(1)
P (s/4, 0) + 4A

(2)
P (s/2, 0) + A

(3)
P (s, 0)+

2(1 + λf )Af (s/4, 0)}.
(42)

4 Comparison with the data

Both models (the old AQM and MAQM) have been fitted
to the experimental data [9,10,19,20] at

√
s ≥ 4 GeV (the

total is 434 points):
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Observable σpp σp̄p σπ−p σπ+p σγp σγγ ρpp ρp̄p

N of points 85 51 49 83 68 17 64 17

In our data set, we do not include a few points on ρπ±p

because of their large errors. This does not lead to any
noticeable change in the values of parameters or in the
behavior of the curves. Without any loss of generality, we
can take Pp = 1 in the previous equations, since this acts
as an overall multiplicative parameter in the fit.

We compare three possibilities for the Pomeron:

(a) DLP : supercritical Pomeron with ζ = 0 in (4) (this
is close to the Pomeron of [13]),

(b) SCP : supercritical Pomeron with free ζ, and
(c) DP : dipole Pomeron with αP(0) = 1.

4.1 The old AQM

The descriptions of these data in the old AQM models
with the different Pomerons mentioned above are compa-
rable to each other; the χ2 in cases (b) and (c), χ2/d.o.f. ≈
3.04, is very close to that in case (a), χ2/d.o.f. ≈ 3.09. It
is interesting to note, nevertheless, that if the parameter
ζ is allowed to be free, the intercept of the supercritical
Pomeron tends to 1 and the other parameters approach
those obtained in the dipole Pomeron model. The same
situation was observed in [15], where these models were
compared with all the data on the meson–nucleon and
nucleon–nucleon cross sections and ratios of the real to
the imaginary parts of the amplitudes. We will come back
to these questions below when discussing the MAQM.
In Figs. 6–9 we present the curves (the dashed/dotted
lines) corresponding to the dipole Pomeron (case (c)). The
curves for both variants of SCP are indistinguishable by
eye from the DP curves.

4.2 The modified AQM

The same set of data is now used to perform the fit within
the MAQM. The values of the free parameters for the
three models of Pomeron considered are given in Table 1.
It is evident that the MAQM leads to a better description
of the data: The χ2/d.o.f. decreases from 3.04 to 1.78 for
cases (b) and (c), and to 2.03 for case (a). The behavior of
σtot and ρ is shown in Figs. 6–9 by the solid curves (once
again, we confine ourselves to plotting the curves for the
case of the dipole Pomeron only). The improvement for
all cross sections and ρp∓p is quite visible.

We can clearly see, therefore, that the MAQM agrees
with the data better than the old AQM does.

We also note that the supercritical Pomeron with an
additional constant term (i.e., with ζ = η2

1/g1 = η2
2/g2 6= 0

in (26)–(28) is very close to the dipole Pomeron. As a mat-
ter of fact, given the small value of ε ≡ αP(0)−1 obtained
from the fit (see Table 1), ε ≈ 0.0005, one can write the
supercritical Pomeron contribution, for instance to the pp
amplitude, in a form indistinguishable, in practice, from

Table 1. The values of parameters obtained in MAQM for
three variants of Pomeron

Parameters SCP, ζ = 0 SCP, ζ 6= 0 DP

g1 (GeV−1) 0.583 13.346 0.317
g2 (GeV−1) -0.079 -0.826 -0.024
αP(0) 1.101 1.0005 1.0 (fixed)
ζ 0.0 (fixed) 1.003 3.399
Pp 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)
Pπ 0.848 0.925 0.919
Pγ 0.0041 0.0044 0.0044
gf (GeV−1) 0.822 1.120 1.112
αf (0) 0.661 0.803 0.810
λf 0.094 0.343 0.439
gω (GeV−1) 0.396 0.395 0.395
αω(0) 0.403 0.418 0.421
gρ (GeV−1) 0.230 0.221 0.222
αρ(0) 0.592 0.586 0.587
χ2/d.o.f. 2.025 1.784 1.780
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Fig. 6. Total pp and p̄p cross sections described in the old
(dashed/dotted lines) and modified (solid lines) AQM with the
dipole Pomeron

the dipole Pomeron case:

App
P = ig2

1 [−ζ + (−is/s0)ε]
≈ ig2

1 [−ζ + 1 + ε ln(−is/s0)] = ig̃2
1 [−ζ̃ + ln(−is/s0)],

where g̃2
1 = εg2

1 , ζ̃ = (ζ − 1)/ε. From the parameters
given in Table 1, we find g̃1 ≈0.31, ζ̃ ≈3.02, which are close
to the corresponding parameters of the dipole Pomeron.
The parameters of the other Reggeons are also close to
those obtained for the dipole Pomeron model.

From this point of view, we can say that the dipole
Pomeron is preferable to the supercritical Pomeron. From
the theoretical point of view, it will never violate the Frois-
sart–Martin unitarity bound, and from the phenomeno-
logical point of view, it has one parameter fewer (because
αP(0) = 1).

Our analysis of the data does not support the conclu-
sion drawn in [11] about σγγ

inel, in which it is claimed that
the preliminary results of the OPAL Collaboration are
doubtful and that the Vector Meson Dominance model



630 P. Desgrolard et al.: The additive quark model revisited: Hadron- and photon-induced cross sections

10 100

-0 .3

-0 .2

-0 .1

0.0

0.1

10 100 1000

-0 .2

-0 .1

0.0

0.1

0.2
pp pp

_
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forward amplitudes of pp and p̄p elastic scattering in the old
(dashed/dotted lines) and modified (solid lines) AQM with the
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Fig. 8. Total π∓p cross sections described in the old
(dashed/dotted lines) and modified (solid lines) AQM with the
dipole Pomeron
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Fig. 9. Total γp and γγ cross sections described in the old
(dashed/dotted lines) and modified (solid lines) AQM with the
dipole Pomeron

(VMD) selects the L3 data4. One can see from Fig. 9
that the theoretical curve goes precisely between the data
points of these two groups. Generally, we predict higher
values of σγp and σγγ than those given in [11], but smaller
than those obtained for these cross sections in the mini-
jets model [21].

4 The predictions of [11] are based on the counting rules of
the old AQM, which should be modified the way we have de-
scribed.

5 Conclusion

Our main result is the following. A better phenomeno-
logical account of the quark–gluonic content of Pomeron
and f Reggeon leads to slightly modified counting rules
for the quark–quark amplitudes when the hadron–hadron,
photon–hadron and photon–photon amplitudes are con-
structed. The additional new Pomeron terms give approx-
imately 10% of the whole Pomeron contribution, while for
the f Reggeon, the new term contributes approximately
30% of the whole f Reggeon component. The important
role of these terms is confirmed by the analysis of the data
on the total cross sections of hadron- and photon-induced
processes. They lead to a decrease of the χ2/d.o.f. by ap-
proximately 40%, qualitatively improving the description
of the data.

In conclusion, we have shown that the simple one-
parameter modification of the Pomeron in the additive
quark model, along with a careful counting of the con-
tributing diagrams, leads to a quantitatively better fit
of all available t = 0 data. This noticeable improvement
gives us reason to believe that the MAQM will give a sub-
stantially better result when the model is applied outside
t = 0. We plan to do this in the near future.
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